Tag Archives: Tectonics

Today in Geological History; June 10th – Tarawera

Standard

Today marks the 130th anniversary of Tarawera bursting back to life after 500 years of sleep. It was one of New Zealand’s largest eruptions in recent history and killed up to 150 people making it the countries most deadly since the arrival of the Europeans.

Members of Te Arawa hapu Tuhourangi and Ngati Rangitihi will, weather permitting, make their annual pilgramage to the top of Mt Tarawera today for the 130th anniversary of the eruption.  Photo/File

Tarawara was last active in 1315 and is believed to have had a great hand in the Great Famine of 1315-137 throughout Europe. In 1886 the mountain gave little warning of up coming events. On June 1st a series of waves were recorded on the surface of Lake Tarawera suggesting seismicity in the area although no one reported feeling quakes and there where no seismometers at this time. Tourists claimed they saw a phantom canoe floating across the waters with Maori warriors on board. Although there were multiple accounts on the sighting many believed it was simply a rogue wave caused by increased seismicity, tribal elders at Te Wairoa however claimed that it was a waka wairua (spirit canoe) and was a portent of doom.

Charles-Blomfield-Mount-Tarawera-in-eruption-June-10-1886.jpgAll was quiet again in the following days and people though little of the complex. Many geologists at the time didn’t even consider the edifice to be active due to the lack of solfataric or fumarolic activity in comparison to New Zealand’s other volcanoes.

At 2am local time on June 10th this all changed. Locals where awoken by large tremors shortly followed by explosions heard as far away as Blenheim over 500 km to the south. by 2.30 all three peaks of Tarawera were eruption with fire fountains lighting up the pitch black, ash filled skies. The eruption began to the northeast side and spread rapidly along a fissure from Tarawera to Lake Rotomahana into the Waimangu Valley. The eruption was believed to be caused by a series of basaltic dikes which rose from depth and intersected the very active hydrothermal system under Tarawera and Lake Rotomahana, causing rapid steam/magma explosions, driving the plume that was observed and creating, by some accounts, fire fountains as tall as 2 km which explains the high explosively of a basaltic eruption.

The darkened skys were seen as far as Christchurch and was catapulted in the stratosphere where it lingered effecting climate for at least a year. The ash fall from the eruption – called locally the “Rotomahana Mud” – can be found into the Bay of Plenty almost 40 km away. This tephra covered 15,000 km2 over the North Island and over 4,500 km2 of the area with at least 5 cm of tephra.

The eruption itself produced at least 1.3 km3 of tephra (~0.7 km3 of dense rock equivalent), likely at a rate of higher than 6 x 104 m3/s. It also produced a base surge that travelled over 6 km from the craters moving 40 m/s and were large enough to top hills that were 360 meters tall which buried several Maori villages.

The Buried Village Rotorua

The Buried Village Rotorua is now a popular tourist destination often branded New Zealand’s answer to Pompeii. As well as the human impacts it also buried the Pink and White Terraces.

 

 

Figure 1; http://www.nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=11653679

Figure 2;  https://en.wikipedia.org/wiki/1886_eruption_of_Mount_Tarawera#/media/File:Charles-Blomfield-Mount-Tarawera-in-eruption-June-10-1886.jpg

Figure 3; http://www.visualitineraries.com/VisitPoint.asp?location=419&title=Rotorua+Museum+of+Art+%26+History

Figure 4; http://www.nzonline.org.nz/nzo/business/the-buried-village-of-te-wairoa-rotorua

 

 

Advertisements

Sinabung Claims More Lives

Standard

Sadly I awoke this morning to the news Mount Sinabung in Northern Sumatra, Indonesia had claimed the lives of three farmers working in the fields by the Gembar Village. This figure has since risen to 7 and is feared to continue to rise with several more critically injured and the Red Cross and army looking for further victims.

Mount Sinabung has been in a near constant state of eruption since late 2013. Pyroclastic flows sweep down its flanks on a regular basis which has lead to 4 km exclusion zone being enforced around the summit.  On February 1st 2014 people were killed by one such pyroclastic flows.

About 10,000 people have been displaced by activity at the volcano which has been on the highest state of alert for well over a year. Sadly the volcano is positioned in a relatively poor and over populated area of the world, many people have little choice but to continue to farm on the volcanoes fertile flanks. Officials have struggled to keep the people to stick the ‘red’ exclusion zones and it is unclear how many people were on the mountain at the time of the recent activity.

Head of the National Disaster Mitigation Agency (BNPB) Willem Rampangilei has instructed Karo Regent to take quick measures to vacate the red zones (Gamber village, Simpang Empat district and Karo Regency) but they know that this is easier said then done. The pyroclastic flows caused by partial collapses of the growing lava dome occurred in a series at 14:28, 15:08 and 16:39 local time on Saturday. Rescue attempts went through the night and in to Sunday morning. An ash column remained for hours, towering over the area darkening the skys and hampering the search operation.

The pyroclastic flow captured here to the left happened only a week ago on May 16th showing the power and regularity of such activity. On May 9th a lahar swept through  Kutambaru near the Lau Barus River killing 1 and leaving one person still missing now also presumed dead.

Sinabung lay silently for nearly 400 year until springing back to life back in 2010. It has now killed at least 25 people since its rousing. Volcanism on the island of Sumatra is caused by the subduction of the Indo-Australian plate beneath the Eurasian plate along the Sunda Arc which creates the andesitic-dacitic composition magmas which are prone to such explosive activity. Sinabung sits just 25 miles north-east of the Toba Super Volcano caused by the same tectonic motion.

 

Figures 1 and 2; posted to Facebook by SkyAlert.

Figure 3; http://www.volcanodiscovery.com/sinabung/news.html

 

Today in Geological History – March 27th; The Great Alaskan Earthquake

Standard

The second strongest earthquake ever recorded occurred at 5.36 pm AST (3.46 am 28/03 UTC) on Good Friday in Prince William Sound, Alaska. Registering a massive 9.2 on the moment magnitude scale, it shook the region for 4 and a half minutes and generating a tsunami which propagated through out the Pacific Ocean.

The Pacific Plate moves northward and subducts under the North American plate along the northern edge of the Pacific Ocean creating a highly seismic zone and the explosive volcanics of the Aleutian Islands. On March 27th 1964 the Pacific Plate jolted forward in a megathrust earthquake causing major vertical and horizontal displacement in an area spanning over 250,000  km

At the time of the earthquake Alfred Wegener’s theory of plate tectonics was only just being proven by surveys of the worlds oceans. Although the study of seismology and the several large subduction earthquakes which happened in this era helped prove the theory it meant little was understood about the mechanics of megathrust earthquakes (a termed created in the wake of the Great Alaskan Quake). Earthquake resilient building standards where  at the time and all where unprepared for  the events of the Easter weekend.

At a depth of just 23 km the focus was just 125 km northwest of the states capital Anchorage which took most of the damage.It hit a high of XI on the Mercalli Intensity scale, the second highest mark, indicating the intensity of the shaking experienced in the area. The shaking tore apart buildings and subsidence ripped apart roads. Anchorage was built on sandy bluffs and clay, the earthquake caused a landslide which buried 75 homes. The control tower at Anchorage International airport was reduced to rubble.

139 people lost there lives, mainly due to the tsunami which badly hit much of the Alaskan coastline but also claimed lives as far away as Crescent City, California where 12 were killed. At its maximum the tsunami reached as high as 220 ft in Shoup Bay, but most were much smaller. Alaska was actually hit by multiple tsunami, one caused by the earthquake itself and then several local smaller waves up to hours later prolonging the suffering and hampering rescue operations.

The Great Alaskan Earthquake changed much of our understanding of the sheer power of our planet, which rang like a bell with vibrations for days after. Waterways as far south as Texas sloshed from side to side as the seismic waves where felt throughout the continent.

USGS worked quickly to collect data, recording the subsidence and uplift in the region. They began to see how secondary faults accommodated the erratic displacement. They also began to form a much clearer picture of the Aleutian Trench where the Pacific Plate subducts cementing the idea of plate tectonics. It also shone light on the major part soil liquefaction had in the destruction of the area. Core samples taken along the Copper River indicated that the Good Friday was not the first megathrust event in the area. Analyzing just 50 ft cores scientists revealed evidence of 9 megathrust earthquakes in the past 5,500 years.

The events of March 27th lead to the USGS beginning installation of an extensive earthquake-monitoring network across Alaska as part of the Advanced National Seismic System. In 1966 the National Earthquake Information Center was established as apart of the US Coast and Geodetic Survey and was transferred to USGS control in 1973. By 1977 Congress passed the Earthquake Hazards Reduction Act, the world was beginning to take the threat seriously.

Figure 1; https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=http%3A%2F%2Fwww.theoildrum.com%2Fnode%2F8573&psig=AFQjCNHCK3Uk0lxyjJZhA8t2fmQn_Kq8iQ&ust=1459094529661721

Figure 2; http://earthquake.usgs.gov/earthquakes/events/alaska1964/

Figure 3; http://www.wired.com/2009/07/tsunami/

 

What Makes an Earthquake ‘Significant’?

Standard
If you google “What is the definition of a significant earthquake?” you are met with Michigan Tech’s* response; Major – magnitude 7-7.9. However when looking at ‘significant’ earthquakes on the USGS** web page there are ones as low as magnitude 3.3. So to different people (and/or institutions) how we classify earthquakes seems to vary greatly and this occurs from top seismologists right through to media reporting and how we perceive the threat.

 

At 11.23 UTC on May 30th a Mg 7.8 earthquake struck off the coast of Japan. This is the same magnitude as that of Nepal’s April 25th quake but one managed to devastate an entire region and the other barely shook a few skyscrapers. Unless, like my self you concern your selves with the rumblings of our planet, or you live in Japan or the surrounding area you probably did not ever know last Saturdays earthquake even happened.

1. Aftermath of Nepal earthquake April 25th 2015.

The main difference between the two is the location of their foci. The focus of an earthquake (sometimes called the hyprocenter) is often confused with the epicentre, however the epicentre is the surface area directly over where the earthquake takes place, whereas the focus is the actual point at depth where the snap of energy takes place. With the Nepal earthquake the focus was just 15 km under a heavily populated region. The buildings on the surface were poorly built and unable to with stand the violent shaking, bringing them crumbling to the ground killing over 8000 people.

2. Displacement by Japan’s March 11th 2011 earthquake.

The Japan earthquake in contrast occurred off the coast, below the Pacific Ocean, although the some shaking was felt onshore. Many may assume this is safer than an earthquake under an urban area but several of the most deadly earthquakes occur at sea as they can induce tsunamis like that of March 11th 2011 which killed nearly 30,000 in Japan or the infamous Boxing Day Tsunami which killed as many as 230,000! Luckily on Saturday no tsunami alert was even issued, as the biggest difference between these two 7.8 earth quakes is depth.

Occurring at 677 km beneath the surface, this deep-focus (below 300 km) earthquake happened so deep its distance from focus to surface is only slightly shorter than travelling from London to Berlin (690 km)!!! As seismic waves travel they dissipate, loosing energy so are never as intense as what they are closer to the source.

3. Diagram of an earthquake, highlighting its focus and Epicenter.the waves lighten in colour with distance from the focus to show their loss of strength.

 

So so far we have magnitude, depth and location which impact on the devastation potential, but is there any thing else? Well we can expand on the last, location, to highlight other potential threats posed by an earthquake. A moderate sized earthquake in the heart of Los Angeles or Tokyo may stop the subway and send food flying off shop shelves but casualties should be low. The same earthquake in a country like Nepal or Haiti can kill thousands. Earthquakes don’t kill people per say, I have never heard of some on being shaken to death by a quake.What kills people is poorly constructed buildings collapsing, bridges failing, gas mains bursting causing fires. After past disasters such as San Fransisco’s great earthquake of 1906, wealthy countries which sit along active fault lines have put in place strict building codes and pumped millions in to disaster management programs and construction.   Obviously earthquake-proof is not always a possibility by earthquake-resistant definitely is and has saved the lives of many of the past few decades. Sadly not all at risk areas have that luxury of these safe guards at the expense of hundreds of lives.

4. Damage and fires caused by the Greath San Fransisco earthquake in 1906.

Seismology is a tricky business. With so much to take in to consideration when classify earthquakes, it is easy to see where there is often conflicting statements. Things are complicated further by the multitude of scales actually used to quantify them. When asked what scale is used, I can guarantee most will say the Richter scale (or local magnitude, ML), that is even what I was taught in school. Charles Richter first put his scale to use in 1935 to give a more scientific quantification for earthquakes than the previously used Mercalli scale which was solely based of human perspective and building damage (this is still used today but not as often). The Richter scale was limited in many ways being primed for nearby, mid-sized earthquakes (M 3-7). Seismologist Beno Gutenberg expanded on Richter’s work greatly enabling the scale to factor in greater distances and separated scales for surface waves (MS) and body waves (Mb).The revised scales still had difficulties and were particularly ineffective when looking at earthquakes which spanned great lengths of fault lines such the Aleutian Fox Island quake of 1952. The Richter scale was finally replaced by the Moment magnitude scale (MW) back in 1979 and this is the scale used by most institutes today including USGS.

Moment magnitude was born from elastic dislocation theory put forward in 1972 which suggests that energy release from a quake is proportional to the surface area that breaks free, the average distance that the fault is displaced, and the rigidity of the material adjacent to the fault. It is based on a similar logarithmic scale to the Richter scale with each step equating to an increase in the amount of energy released 101.5 ≈ 32 more than the previous. Earthquakes usually have similar Richter and moment magnitude numbers but rarely exactly the same and this can be one way one earthquake can be reported at different levels across the media if their sources used different scales. Another way which causes different figures  is precision; the more seismic stations used to calculate magnitude the more precise the result. When an earthquake is first recorded institutes are likely to only use their own data but as soon as they have access to the global seismic network they can give a more accurate classification. This happen with Japan’s earthquake on May 30th, initial reports put it over a magnitude 8 but this was quickly downgraded to 7.8.

As you can see an earthquakes significance is a matter for debate and in many cases personal opinion. Magnitude and location (not just geographically but also politically) are the main factors but it tends to vary earthquake to earthquake.

Station VRI seismogram

5. Example of a seismograph.

 

Nepal Earthquake

Standard

I sat in a bar last Thursday night discussing the rarity of large-scale natural disasters with several of my non-geologically minded friends. They were shocked to hear just how common certain hazards actually were. I explained that media coverage is scarce depending on fatalities or area of the occurrence, but we have actually been lucky not to have seen any particularly deadly events in a while. Sadly I spoke to soon…

Figure 1. Remains of the Bhaktapur temple, once a UNESCO world heritage site

At 11.56 am local time (06.11 UTC) Saturday, Nepal was rocked by its strongest earthquake in decades. The Mg 7.8 quake was intensified by its shallow depth, just 11 km below the surface, meaning waves had less time to dissipate and disperse leaving the region to feel its full force. This morning officials have raised the estimated death toll again to just under 4000 but it could be weeks before we have real figures. The rescue operation has been hindered by hundreds of aftershocks many over a Mg 5 and even several over a Mg 6 making them devastating events in their own right.

The effects where far-reaching with all neighbouring countries feeling the tremor. India has so far reported 67 deaths and China and Bangladesh 20 and 8 respectively. 19 people lost their lives on Mount Everest as the quake induced avalanches across the snowy region. It is the mountains highest fatality since explorers began ascending its flanks in 1953, scores of hikers are still believed to be stranded.

Figure 2. South Base camp was struck by an avalanche soon after the earthquake killing 12

Why has this earthquake been so devastating?
The answer is a combination of two factors;

Firstly the region is extremely tectonically active. The processes that caused this earthquake are the same that have given rise to the highest mountain range on the planet, the Himalayas. The Indian plate is moving north-northwest towards the Eurasia plate at a rate of 40-50 mm per year. The thick continental crust of the Indian plate instead of simply subducting under the Eurasian plate in to the mantle, like oceanic crust would, actually lifts the opposing plate creating the Himalayan mountain range. Large scale earthquake are relatively common along the subducting surface of the Indian plate as it sticks to the overriding plate, there have been 4 in the last century including Saturdays event. The largest was a Mg 8.0 back in 1934 roughly 240 km southwest of the recent quake; over 17,000 lost their lives. The last was back in 1988 claimed nearly 1500.

image

Figure 3.

Secondly despite all this knowledge the country and many of its neighbours are grossly unprepared for such events. Nepal is one of Asia’s poorest countries, many of its residents live in extremely poorly constructed buildings and in many cases shacks. Building codes and regulations in place in richer at risk regions, say San Francisco, are simple non-existent in the Himalayan region. The epicenter was just 77 km north-west of the countries densely populated capital Kathmandu, were it’s believed at least 800 have lost their lives. Surrounding villages have seen complete devastation with no building and very few people surviving.

Figure 4. Huge displacement due to the quake.

Only last month at the UN World Conference on Disaster Risk Reduction identified the potential threat in the region but no further measures were put in place. Hopefully when the rebuilding process begins steps will be taken to limit the threat of future earthquakes.

Figure 1; http://www.theguardian.com/world/live/2015/apr/26/nepal-earthquake-death-toll-exceeds-1500-rolling-report

Figure 2; http://unofficialnetworks.com/2014/04/12-confirmed-dead-everest-avalanche

Figure 3;

Figure 4; http://www.cidi.org/disaster-responses/nepal/#.VT5EMpMYGuQ