Category Archives: Geology

Today in Geological History; March 11th – Tōhoku Earthquake & Tsunami

Standard

 

article-0-0D924D9F000005DC-785_964x591.jpgI am pretty sure I have covered this event before but seeing as today marks the 5 year anniversary of one of the worst natural disasters in the past decade I thought it deserves a much more in depth look. The events of March 11th destroyed the lives of hundreds of thousands of people and claimed the lives of nearly 20,000. For me, it opened my eyes to a world of geohazards and mad me realized this was something I wanted to study and understand so such loss of life would not happen again.

There are three elements to the events of March 11th that I am going to look at here; the earthquake, the tsunami and the Fukushima power plant. Each aspect a huge disaster in on there own but interlinked as they were caused devastation for Japan. 

The Earthquake

Instrumental Intensity Image

Japan is a volcanic island which stretches along where the North American, Pacific, Eurasian and Philippine plates all collide at different points. It is a part of the Pacific Ring of Fire, the world’s most tectonically active area. Practically all of our planets largest and most destructive earthquakes occur along the ring, one of which rocked the east coast of Japan at 2.46 pm JST (5.46am UTC) on March 11th 2011.

The magnitude 9 quake struck at the shallow depth of just 32 km roughly 70 km off the Oshika Peninsular. The area was already alert to seismic activity as several large foreshocks had occurred in the run up including a Mg 7.2 on March 9th and followed by three more above a Mg 6. Of course no one knew these were precursors to something much larger…

Initial reports from JMA and USGS put the March 11th quake at a 7.9 but this had risen first to a 8.8 and then to a 9 before most of the seismic waves had even hit Tokyo 373 km away. Luckily thanks to Japans intense seismic network the countries capital had at least 80 seconds warning before they felt the strong shaking.

The megathrust earthquake occurred where the Pacific Plate subducts beneath the North America Plate. The Pacific Plate moves at a relative speed of roughly 9 mm per year but it is not a smooth decent, tension can build and release in a large snap causing an earthquake. On March 11th this happened in epic style causing over ~50 meters of displacement near the Japan Trench which caused the tsunami which swept across the Sendai planes. The earthquake was so powerful that up to 1.69 meters of co-seismic deformation has permanently altered our planet and affected the Earths tilt shaving 1.8 microseconds of the day (not that we would ever notice!)

It was the forth largest earthquake ever recorded and the largest ever to strike Japan.

The Tsunami 

The displacement on the sea bed in turn caused a huge displacement of water in the Pacific ocean its self. Across a 180 km stretch there was recorded up thrust of 6-8 meters. Above the rupture the tsunami waves would have looked like no more than ripples on the surface radiating out across the ocean. It is as the waves reach the continental shelf and the water is forced upwards that they begin to take on their characteristic ‘wall of water’ appearance.
At its maximum height (recorded at Miyako, Iwate) the waves hit 40.5 m high (133 ft). The Pacific has the most comprehensive tsunami warning systems in the world but even this gave only about 15 minutes warning from the earthquake to waves hitting the coast line. Travelling at speeds up to 500 mph the water surged up to 6 miles (10 km) inland.

Honshu earthquake tsunami travel times

It was not just Japan which felt the repercussions of the event. Tsunami waves propagated out through out the entire Pacific. 11,000 miles away the coast of Chile experienced waves in excess of 2 meters along with most of the America west coast right up through to the Aleutian Islands and as far south as Antarctica where it broke chunks off the Sulzberger Ice Shelf

An estimated 5 million tonnes of debris began washing up on shore lines across the Pacific in the months and even years after the initial Earthquake. In April 2013 a 20 ft boat ran aground in California and was later identified as belonging to the marine sciences program at Takata High School, Japan. NOAA have kept tracks and aimed to clear as much of the debris as possible to minimize risk to ships and wild life but the operation can take more than a decade.

Fukushima

The melt down at the Fukushima was the worst nuclear disaster the world has seen since Chernobyl in 1986.

The plant ran by TEPCO had 3 of its 6 units shut down for inspection when the earthquake struck. Units 1, 2 and 3 then under went automatic shutdown cutting off power. 50 minutes later the waves up to 15 meters high breached the measly 5.7 meters seawalls and flooded the basements of the turbine buildings and disabling the emergency generators. The lack of power meant the cooling systems of the 3 active reactors failed and eventually the heat caused by decay caused the containers to burst leaking radioactive material.

It was classified a Level 7 on the International Nuclear Event Scale (INES) and its was the way the event was handled from the very beginning my TEPCO which saw the escalation in the threat. Approximately 15 PBq of caesium-137 was released along with some 500 PBq of iodine-131, luckily all the failed reactors were in concrete containment vessels, which limited the release of strontium-90, americium-241 and plutonium.

Dozens of vehicles lie abandoned and covered in overgrown bushes along what was once a stretch of road near the power plantNo deaths were caused by the events or short term radiation exposure but it is thought people in the area worst hit will have a slightly higher risk of developing certain cancers in the future. Now 5 years on there is still a 12.5 km is still in place with thousands of people still exiled from their homes. The wild has reclaimed the land making it look like a scene from an apocalyptic film.

It could be centuries before the area is truly deemed safe to live on again.

Pre-Warning; This has happened before

Japan is no stranger to tsunamis; the 1896 and 1933 Sanriku earthquakes (Mg 8.5 and 8.4 respectively) also brought deadly waves. For this reason tsunami barriers have been constructed both on and off shore, trees were planted along the coastline, vertical evacuation buildings were built to the highest standards and regular evacuation training was introduced. But none of these were built to with stand the sheer force of a tsunami of this magnitude.

In 2001 a team from Tohoku University published an article in Journal of Natural Disaster predicting such an event occurring every 800-1100 years. Within the Sendai Plain there is evidence of at least 3 major tsunami deposits all left within the past 3000 years. On July 9th 869 BC what is believed to be a magnitude 8-9 earthquake occurred off the coast of Sanriku causing a major tsunami which left deposits up to 4 km inland. So given that we knew an event like this had occurred before, why was Japan not better prepared for March 11th?

Sadly human nature does not always listen to the reason of science. It is often easier to believe ‘it won’t happen in my life time’ and then brush the threat under the carpet for future generations. The problem is it does not matter how much we study the mechanics of our planet we are still no where near being able to predict these disasters with any degree of accuracy meaning preparation is our best defence.

Aftermath

A report issued by the Japanese government in May 2015 claimed the events of March 11th 2011 caused $300 billion dollars. A confirmed 15,894 people lost their lives, 2,562 people are still unaccounted for.

5 years on the area is yet to recover. An estimated 174,000 are still displaced mainly due to the exclusion zone still heavily in place around the Fukushima plant. Soon as the initial rescue operation was completed the Tohoku Earthquake Tsunami Joint Survey Group was assembled. A team of natural scientists and engineers from 63 universities world wide set out to understand what made this tsunami so powerful and how we can protect our selves from further events. By the end of 2011 the Japanese government had passed laws to establish “tsunami-safe cities” and pledged billions of dollars to an intense 5 year clean up operation. It was clearly a bigger job than they originally thought….

Today there are still over 60,000 people living in temporary accommodation.For residents once living near the Fukushima power plant they will probably never return to there own homes. Sendai is still trying to recover from the tragic events but also now living in fear that this could occur again.

It is for this reason I choose to go in to studying geoscience. We all live at the mercy of our planet and most of us never even consider the risk the land beneath our feet poses. Prediction, preparation and knowledge can save lives and this is what I one day want to help with.

 

Figure 1; http://www.dailymail.co.uk/news/article-1365318/Japan-earthquake-tsunami-The-moment-mother-nature-engulfed-nation.html

Figure 2; http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/c0001xgp/

Figure 3; http://minookatap.com/2011/08/22/japan-book-club-the-big-wave-5/

Figure 4; http://www.livescience.com/39110-japan-2011-earthquake-tsunami-facts.html

Figure 5; https://7plaguesofgod.wordpress.com/2011-tsunami-japan/

Figure6; http://vassarchronicle.com/section/politics/foreign-affairs/lack-of-regulation-fukushima-meltdown/

Figure 7; http://www.dailymail.co.uk/news/article-3263714/Destroyed-man-reclaimed-nature-Amazing-images-reveal-exclusion-zone-Fukushima-abandoned-overgrown-wilderness.html

 

 

 

Today in Geological History; Feb 19th – Huaynaputina 1600

Standard

Today 416 years ago South America experienced its most explosive eruption in historical times. The unassuming Huaynaputina volcano sits in southern Peru just 26 km of Ubinas, the countries most active volcano. Unlike its 5672 m neighbour, Huaynaputina has no distinct topographic elevation and lays inside a 2.5 km crater leading many to believe it was just a mountain caused by other forces. Laying in the Andean Volcanic Belt where the Nazca Plate subducts under the western edge of the South American Plate it is situated on the rim of the Rio Tambo canyon further camouflaging it to the untrained eye.

The sleeping giants last eruption was in February 1600. Reaching an impressive VEI 6, it was the biggest eruption of the past 2000 years.

Details of the eruption were captured beautifully by Fray Antonio Vazquez de Espinosa a Spanish monk travelling through Central and South America at the time. Days before the eruption booming noises were heard from the vicinity and steam was seen seeping from the volcano. Locals began to panic, preparing young girls for sacrifice to appease Supay the god of death who people believed was angry at them and causing the mountains behaviour. February 15th marked a strong increase in activity with tremors becoming stronger and more frequent, many began to leave the area fearing something bigger was coming.

At roughly 5 P.M. on February 19th, Huaynaputina erupted violently catapulting ash high in to the stratosphere. Pyroclastic flows sped down all sides of the volcano, to the south mixing with the waters of the Rio Tambo river causing devastating lahars.  Within just 24 hours, Arequipa was covered with 25 centimetres (10 in) of ash. Ashfall was reported 250–500 kilometres (160–310 mi) away, throughout southern Peru and in what is now northern Chile and western Bolivia. It is thought that more than 1500 people were killed by the eruption its self although with little record of populations at the time the figure varies between sources. 10 villages were completely buried by ash and regional agricultural economies took 150 years to recover fully.

It was not just South America which was effected by the eruption. Ice cores recorded a spike in acidity at the time indicating a phenomenal amount of sulphur dioxide was released. Effects on the climate right around the Northern Hemisphere (Southern Hemispheric records are less complete), leading to 1601 being the coldest year in six centuries, leading to one of the worst famines ever recorded in Russia. In Estonia, Switzerland and Latvia, there were bitterly cold winters in 1600–1602 leading the deaths of hundreds; in 1601 in France, the wine harvest came late and in Germany production of wine collapsed completely. In Japan, Lake Suwa had one of its earliest freezings in 500 years and even China recorded peach trees blooming late.

An eruption of this scale in the populated Peru would be devastating so close watch is kept on Huaynaputina and its more active neighbours.

 

Figure 1; https://commons.wikimedia.org/wiki/File:Huaynaputina.jpg

Figure 2; https://volcanohotspot.wordpress.com/2015/04/12/volcanoes-of-peru-3-huaynaputina-catastrophe-in-1600/

 

Lake Taupo

Standard

For years a major thing on my bucket list was to swim in a crater lake, which as the name suggests is a body of water formed in a volcanic crater or caldera. Luckily I got to tick this one of when I visited Nicaragua last year and swam in the blissfully warm Apoyo Lagoon, but of course this only appealed to my addictive nature and made me dream about going one better…how about a crater lake formed by a super eruption. When my friend told me she was off travelling for a few months and her first port of call would be New Zealand, I decided she could live my dream for me on this one and I straight away advised her to head to Lake Taupo. Of course to any one without local knowledge or a familiarity with historic eruptions, this would not be of any significance. To be honest neither would me telling them I want to go swim in a random lake in New Zealand. So I decide to write a peace on one of the largest eruptions in the past 70,000 years to explain just why it is so important.

With a surface area of 616 square kilometres (238 sq mi), it is the largest lake by surface area in New Zealand and the second largest freshwater lake in Oceania. Now it’s a popular tourist destination, an area of true natural beauty, but this tranquil lake was born from a violent even which occurred roughly 26,000 years ago.

Volcanoes graphicThe Taupo volcanic zones spans a hug area in North Island 350 kilometres (217 mi) long by 50 kilometres (31 mi) wide. Mount Ruapehu stands 2797 high and marks its southern limits, while a submarine volcano, Whakatane volcano, 85 kilometres (53 mi) beyond White Island is considered it’s north-eastern.  Several volcanoes in the zone are still very active with Ruapehu and Tarawera causing New Zealand’s most deadly eruptions in the past few centuries (both events killing around 150 people each). None of these small events come close to the Taupo volcano itself after which the zone is named. The zone is caused by east-west rifting within plate the at a rate of 8mm per year, slowly pulling the Northern Island apart.

 

Taupo’s last eruption is referred to as the Hatepe eruption and has be dated at roughly 180 AD was a VEI 7 making it one of the largest in the past 5,000 years. It coincided with reports as far away as Rome and Northern China of brilliant red skyies and disruption to climate for several years. Haptepe spewed more material in to atmosphere than several of the largest eruptions of this century combined, but still it was nothing compared to the event which form the Taupo caldera and in turn Lake Taupo; the Oruanui eruption.

The Unit as the level of the volcanologists feet is an exposure of an unwelded pyroclastic flow deposit from the Oruanui eruption. The light- coloured air fall pumice are from varying eruptions between Oruanui and the uppermost layer of deposits which were laid by the Hatepe eruption.

Its hard to imagine what the Northen Island looked like before the Oruanui eruption 26,500 years ago with out the gapping hole that is Lake Taupo at its heart. The eruption released an estimated total of 1,170 km3 (280 cu mi) of material, a VEI 8 eruption making it the largest eruption of the past 70,000 years. It effected climate world wide for decades, many people saying it had a helping hand in the last glacial maximum. The effects are hard to comprehend when the largest volcanic eruption in human times was only a fraction of the size.

The eruption caused the Taupo magma chamber to collapse on its self creating the vast caldera which today Lake Taupo occupies just over two thirds of. Ash fall deposits from the eruption have been documented over 1000 km on Chatham Island showing the intensity of the blast. An event like this would decimate modern day New Zealand quiet possibly leaving no survivors on the Northern Island if not enough warning was given. Luckily though all is peaceful and scerene on the shores of the Great Lake and no threat appears to be imminent. That said Taupo still shows us gentle signs of the power beneath with its Craters of the Moon tourist attraction filled with steam vents and mud pools as well as numerous hot springs.

When people ask me why I study volcanology when the risk is “minimal” to human life in comparison to say earthquakes or flooding, this is a prime example which shows how little people know about what our planet is capable of. So Ginge, I hope you enjoy your trip and now understand a little more why Taupo is one part of your adventure I sincerely wish I was there!

 

Figure 1; http://www.waikatoregion.govt.nz/Services/Regional-services/Regional-hazards-and-emergency-management/Lake-Taupo-Erosion-and-Flood-Strategy/

Figure 2; http://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes

Figure 3; http://volcano.si.edu/volcano.cfm?vn=241070

 

Today in Geological History; December 24th -Tangiwai Disaster

Standard

The Tangiwa disaster was New Zealand’s worst rail accident, which at face value looks out of place on this site. but the incident was infact indirectly caused by the earlier eruption of Mount Ruapehu.

Mount Ruapehu sits at the southern end of the Taupo Volcanic Zone and is the largest active volcano in New Zealand. In 1945 eruptions began in March and ran intermittently through out the year. Activity varied greatly from gentle steam plumes to doming in Crater Lake.

The activity in 1945 had several dire consequences. In July geologists Robin Oliver and J. Witten Hannag has a lucky escape when an explosion showered them with hot rocks and ash leaving Oliver unconscious and seriously burnt. The heavy ashfall through out the last few months of the year also led to the closure of a hospital 9 km away from the crater as ash kept penetrating the generators. Over the year hundreds of people were diagnosed with what doctors termed ‘Ruapehu’s Throat’ where people were suffering with breathing difficulties from inhaling the dense ash. But the worst of all was the Tangiwa disaster.

The activity of 1945 carved out the crater deeper than it previously was and once activity had ceased the crater began filling with water. By 1953 the water level had risen over 8 meters higher then it was before the eruptions and was only contained by an unstable mass of ice and volcanic rubble and ash. At 8 p.m. on Christmas Eve 1953, the debris at the outlet of Crater Lake collapsed sending 340,000 cubic metres of water pouring into the head of the Whangaehu River. It swept down the valley, picking up sand, silt and boulders as it went. Soon after 10 p.m. the lahar smashed into the main trunk railway bridge at Tangiwai. The concrete piers were knocked out and the bridge partially collapsed.

A passenger train from Wellington, packed with 285 people heading to Auckland for the holidays had no idea what lay ahead as it approached the bridge in the dark. A local who saw the bridge collapse tried to flag down the speeding train but even though the driver saw him and applied the brakes the train was going to fast and still carried on to the bridge. The engine and first carriage nosedived, landing against the opposite bank. Four more carriages plunged into the river, floating in the torrent briefly before sinking. Another four carriages remained on the track, but one of them dangled over the river.

One carriage was carried more than 2 kilometres downstream. The others were swept across the flooded main road or rammed into the riverbanks. Some people had escaped and swam to the banks, but dozens drowned in the tangles of gorse there. The work of recovering victims went on for several days along 60 kilometres of the river. Twenty bodies were never found; it was assumed they had washed out to sea, some 120 kilometres away. 151 people lost there lives due events set in motion by a volcano 8 years earlier.

Figure 1. http://mp.natlib.govt.nz/detail/?id=7617&l=mi

Figure 2. https://www.flickr.com/photos/archivesnz/11440413944

 

Back to Masaya!

Standard

Hi All.

As you may now I am nearing the end of my eventful journey with the Open University and next February I will embark on my final module Science Project Course – Geosciences, or better known in brick universities as my dissertation.

Of all the things I have done along my journey, working with Earthwatch on Masaya has been the most inspirational and thought provoking. It has changed my view on how volcanoes are monitored and what we perceive to be a geohazard.

For this reason I am aiming to go back in 2017 and base my dissertation around the work done monitoring geophysical changes to the volcano versus the rate of degassing.

If you would like to help fund this research and the great work Earthwatch do on Masaya please do so below.

http://eu.earthwatch.org/expedition-fund/MasayaDissertationResearch

Thank you for all your help and support.

Mel

The New Decade Volcano List; #5 Trans Mexico Volcanic Belt

Standard
The guys at Volcano Cafe have picked up where they left off with a rather interesting choice at number 5. Mexico is one of the more volcanically active countries in the world, with the likes of Popocatépetl and Colima frequently showing at least some signs of unrest.  This has been one of my favourites which they have put forward as it highlights the complexity of the region and how several systems can affect a region meaning threat can come from varying or even all sources!

Mexico City and the Trans Mexico Volcanic Belt – NDVP #5

The extinct volcano Sierra de Guadalupe rises 750 metres above Mexico City, it’s highest peak within 15 km of the centre of the city. In spite of conservation attemps, illegal buildings continue to sprout and at present the crater and debris avalanche have been completely covered by urban development. (Hotu Matua)

It is inevitable that the higher we get in this series, the more speculative our choices may seem. If everything was known about every volcano, identifying and motivating the choice of the ten most dangerous ones would be a relatively simple matter. As it is, our selections have to be based on what meagre information is available and educated guesswork as to what the full story might or could be. In our choice of number five, this is highlighted as we cannot even identify a single volcanic system as the main threat, but then the area occupied by the cities Mexico City, Toluca and Puebla is highly unusual.

Throughout almost its entire length, the Ring of Fire produces volcanoes aligned on and along the subduction zone forming a great arc of stratovolcanoes which has given rise to the term “Arc Volcanism”. But running across Mexico from Colima in the west to Pico de Orizaba in the east, the subduction zone makes an almost 90-degree turn and the volcanoes seem to align on a N-S line, perpendicular to the subducting plate. Three main such alignments are identified in recent scientific papers; Cántaro–Nevado de Colima–Colima de Fuego in the west, Tláloc–Telapón–Iztaccíhuatl–Popocatépetl (Sierra de Nevada) just east of Mexico City, and Cofre de Perote–Las Cumbres–Pico de Orizaba–Sierra Negra at the eastern end of the Trans Mexico Volcanic Belt, alternately known as the Trans Mexico Volcanic Zone. For the entire TMVB, volcanism has trended from acidic (dacite and rhyolite) to intermediate magmas (andesitic) as well as from north to south although there are numerous and noticeable exceptions to these identified trends.

The geological setting of the Trans Mexico Volcanic Belt. The numbers next to the arrows showing the direction are the annual subduction rates. The numbers along the isolines display the depth of the subducting plate as inferred from earthquakes. The TVMB is outlined in grey and the alignment of volcanoes mentioned are in yellow. Note how volcanoes (north-)west and (south-)east of the TMVB seem to align along the 300 and 100 km subduction isolines as opposed to transversing them as is the case in the TMVB. (Adapted from Macías 2007)

In addition to these three main lines of active volcanism, there are further lines of dormant or extinct volcanoes, one bordering the Mexico City plain to the west and the Toluca plain to the east with another one bordering the latter plain to the west. To complicate the matter even further, both north and south of these plains run lines of ancient, heavily eroded and extinct(?) volcanic edifices that seem to follow the subduction zone. If we also include the Puebla plain to the east of the Sierra de Nevado, there are more than 1.6 million inhabitants of Greater Toluca, 22.5 million of Greater Mexico City and 2.1 million of Greater Puebla, in all well in excess of 25 million.

Landsat image of the Toluca, Mexico City and Publa plains. The names of active to potentially active volcanoes in yellow, possible volcanic alignments are marked in blue and the 90-km-long Chichinautzin volcanic field immediately south of Mexico City, centred on the Aztec temple El Tepozteco, is circled. (Author)

Not only is the north-south alignment perpendicular to the subduction zone of the most recent volcanoes highly unusual. There is as well a dearth of large, explosive calderas in the TMVB. The semi-official blog GeoMexico laments: “There is still lots of work needed to fully unravel the geological secrets of Mexico’s Volcanic Axis which crosses the country between latitudes 19 and 21 degrees North. Unlike most volcanic belts elsewhere in the world, this one does not appear at first sight to correspond to any plate boundary. Another of the mysteries of this volcanic region, where igneous upheavals have shaped the landscape for several million years, is the relative dearth of calderas, the “super craters” formed either by collapse or by giant explosions.”

As of 1999, there were seven calderas known in the belt, one of which is in fact no more than a crater lake, Lake Alchichica, with a diameter of 1888 meters. The largest of these seven calderas is the 15 by 21 km Los Humeros caldera in the state of Puebla, close to its border with Veracruz. It lies 55 km west-north-west of the city of Veracruz (Xalapa), relatively close to Puebla (Teziutlán). The main caldera is about 400 m deep and roughly oval in shape. Prior to its formation 460,000 years ago, lava emitted from this vent covered 3500 square km with ignimbrites. Later, two smaller calderas formed nearby, with ages of about 100,000 years (Los Potreros caldera) and 30,000 years (El Xalapazco) respectively.

The 11 km wide and 400 m deep, heavily eroded Amealco caldera is located at Garabato (= unintelligible scribbles), midway between the towns of San Juan del Río and Maravatio, about 125 km NW of mexico City. Caldera-related activity started in the Pliocene ca. 4.7 Ma ago and ended around ca. 2.2 Ma. The total volume of pyroclastic flow deposits and ignimbrites is in the region of 500 cubic km. The Huichapan Caldera in the central sector of the TMVB, also referred to as the Donguinyó-Huichapan caldera complex is 10 km in diameter and appears to be the result of two overlapping calderas that date to 5 and 4.2 million years ago respectively. The rocks from the older caldera are intermediate to basic in composition, while those from the more recent caldera are acidic (high silica content) rhyolites, another relatively unusual feature.

Since then, one very interesting albeit ancient feature has been discovered in the Coxcatlán-Tilzapotla region, about 100 km south of Mexico City, just south of the TMVB. The elliptical NW-SE oriented dome structure, approximately 30 x 52 km, encompasses the Tilzapotla collapse caldera, rhyolitic domes, large volumes of ignimbrites, as well as the Buenavista intrusive body, and the Coxcatlán and Chautle plutons located west and east of the structural margin of the caldera, respectively. Previous geochronological studies carried out on the silicic and intermediate magmatic rocks places the uplift in the dome area in the late Eocene (~38-34 Ma). This suggests that doming was related to emplacement of magmas into the crust prior to collapse of the Tilzapotla caldera at 34.3 Ma.

The approximately 11 x 13 km Tilzapotla caldera is located on top of this large, rhyolitic dome feature. “The caldera is defined by a 33 x 24 km semi-elliptical structure that encircles the largest exposures of the Tilzapotla ignimbrite and corresponds to the structural margin rather than the topographic rim. A central uplifted block limited by NW-trending faults is the main indication of a resurgent stage. The caldera structural margin is surrounded by extensive exposures of Cretaceous marine sequences that structurally define a broad elliptical dome (45×35 km) originated in the first stage of the caldera evolution. There is evidence showing that the 34 Ma Tilzapotla ignimbrite represents the climatic event of the caldera collapse.” (Morán-Zenteno et al 1998) This begs the question of how the very large dome feature itself was formed. It covers some 1500 square kilometres to a height more than 1,000 m above the surrounding plains with a total thickness in excess of 800 m. If we make allowances for surface depression and 34 My of erosion, the total volume emitted is in excess of 1,500 cubic kilometres of silicic magma.

The observed absence in the TMVB of the elsewhere omnipresent large explosive calderas is a conundrum. Either they have been masked by the products of subsequent volcanic eruptions and rapid, tropical erosion and still await discovery, or, volcanism in the TMVB is sufficiently different to almost preclude these eruptions. However, the presence of the >500 km3 Amealco caldera, the 15 by 21 km Los Humeros caldera and the 10 km Huichapan Caldera rather points to the former being the case. In order to gain an insight into how very complex Mexican volcanism can be to unravel, at this point I recommend a look at the reconstruction by Diaz & McDowell (page 11); “Figure 7. Volcanic evolution of the Amealco caldera and peripheral volcanoes”. It is unfortunately too large to reproduce here, so please, take a look!

http://www.geociencias.unam.mx/~ger/2000_GSASP_334_Ame.pdf

If we turn our attention away from the very largest types of eruptions, there are several large and highly dangerous volcanoes in the Toluca – Mexico City – Puebla area. To the SW of Toluca lies the giant stratovolcano Nevado de Toluca and 50-70 km east and southeast runs the Sierra Nevada mountain range comprised of four major volcanoes:

The 4,680 m a.s.l. high Nevado de Toluca volcano as seen from the city of Toluca, 24 km away. (Wikimedia Commons)

Nevado de Toluca

In the Nahuatl language, “Xinantécatl” means “naked man”. Alternately, the name has been interpretated as “Chicnauhtécatl”, “nine hills” which given the volcano’s appearance seems the likelier. Nevado de Toluca is a composite volcano of late Pleistocene-Holocene age with a calc-alkaline andesitic to dacitic composition. The northern flank of Nevado de Toluca has a relative elevation (prominence) of 2015 m with respect to the Lerma river basin, and its southern flank has a relative elevation of 2900 m with respect to the Ixtapan de la Sal village. The elliptical 1.5 by 2 km wide crater of Nevado de Toluca is breached to the east. The interior holds a dacitic central dome and the remains of two ancient scars, located on the SE and NE flanks of the volcano which are related to the partial collapse of the edifice. Unusually for volcanic lakes, the two crater lakes are alkaline, not acidic.

El Refugio quarry located 15 km northeast of Nevado de Toluca crater showing an exposure of the 37,000 yr B.P. block-and-ash flow deposits (Macías 2007)

Nevado de Toluca was built upon the intersection of three fault systems with NW-SE, NE-SW, and E-W orientations. This structural geometry favoured the formation of coalescent pyroclastic fans that reach all the way to the cities of Toluca and Metepec, 25 km to the NE of the volcano. During the late Pleistocene, the southern flank of Nevado de Toluca collapsed twice, originating debris avalanche deposits that were transformed into debris flows with distance. The scars produced by these collapses have disappeared due to subsequent volcanic activity and glacial erosion. The older flow can be traced to distances up to 35 km from the summit while the younger event near the end of the Pleistocene ( > 40 kA) generated a debris avalanche, the “Pilcaya Debris Flow”, that travelled more than 55 km from the summit. Activity then continued with three very large explosive eruptions – the Lower Toluca Pumice ca. 21,700 yr B.P., the Middle Toluca Pumice ca. 12,100 yr B.P. and the Upper Toluca Pumice ca. 10,500 yr B.P. The pyroclastic deposits of these eruptions are mostly covered by subsequent and “smaller” Plinian eruptions.

The Sierra Nevada Volcanic Range

From north to south, the Sierra Nevada Volcanic Range comprises the volcanoes Tláloc, Telapón, Iztaccíhuatl, and Popocatépetl. Previously, it was considered that volcanic activity began to the north and migrated south but new evidence obtained from previous studies, field reconnaissance and radiometric dating paints a slightly different picture.

During the past 10,000 years, there have been repetitive Plinian eruptions of Popocatépetl including some historic events and the 1994–present eruption, but Holocene activity has not been limited to Popocatepetl alone. 9,000 years ago, Iztaccíhuatl produced the Buenavista dacitic lava flow. As is obvious, magmatism of the Sierra Nevada Volcanic Range has not kept a continuous north to south migrating path as had been previously surmised. Rather, it has shifted back and forth chaotically throughout its evolution.

Tláloc

Volcanism at the Sierra Nevada Volcanic Range likely started 1.8–1.4 Ma years ago with the construction of Paleo-Tláloc volcano, today buried by younger deposits. The activity continued between 1.07 and 0.89 Ma with the emplacement of dacitic domes, lavas and associated pyroclastic flows (“San Francisco” 1 Ma, “Chicoloapan” 0.9 Ma). Then between 0.94–0.84 Ma, the main edifice of modern Tláloc was built up through the emission of dacitic lava flows. Although Popocatépetl took over as the centre of eruptive activity about 320 kA, Tlaloc reawakened with the emission of rhyolitic magma at 129 kA followed by the emplacement of the El Papayo dacite (118 kA) to the south and Téyotl summit lavas (80 kA).

Tlaloc has always been considered the oldest volcano of the Sierra Nevada Volcanic Range (and extinct), but recent field data have revealed that Tlaloc was very active during late Pleistocene with a series of five explosive eruptions at 44, 38, 33, 31, and 25 kA and the growth of the summit dome. One of these eruptions produced the 1.58 km3 (DRE) Multilayered White Pumice (MWP), a rhyolitic pyroclastic sequence that consist of abundant white pumice (up to 96 vol.%), rare gray pumice, cognate lithics, accidental altered lithics, xenocrysts. The pumice clasts contain phenocrysts of quartz, plagioclase, sanidine, biotite, rare Fe–Ti oxides, monazite, zircon and apatite. Xenocrysts are represented by plagioclase, microcline, orthoclase and quartz likely coming from a deeper plutonic body. Both pumices have a rhyolitic composition (74.98 ± 1 wt.% SiO2 in water free basis) which represents one of the most acidic products of Tlaloc and the entire Sierra Nevada Volcanic Range. (Macías 2011)

Telapón

The inauspicious 260 m high (elevation 3,600 m) steep-sided Cerro Papayo dacitic lava dome marks the vent of the Telapón volcano on the north flank of Iztaccíhuatl formed approximately between 0.38 Ma and 0.34 Ma ago with the emplacement of lava flows and a dome. The 21 cu km compound lava field covers 84 sq km and includes flows that travelled long distances in opposite directions – into the Valley of Mexico and towards the Puebla basin. In addition, the Papayo lavas overlie glacial moraines about 12,000 years old, thus Telapón has been active until the very end of the Pleistocene. The lithology of Telapón shows two periods of activity. First, an andesitic-dacitic Lower Volcanic Event that was emplaced between 1.03 MA and 65 kA, and second, a dacitic-rhyolitic Upper Volcanic Event emplaced between 65 to 35 kA. (Macías 2007).

Photograph of Iztaccihuatl which clearly shows the resemblance to a sleeping woman. (Uncredited photograph, labels added by author)

Iztaccihuatl

The name “Iztaccíhuatl” means “White woman” in the Nahuatl language. Linked to the Popocatepetl volcano to the south by the high saddle known as the Paso de Cortés, it is a 5,230 m (1,560 m prominence) dormant volcanic mountain. Despite its relatively modest prominence, the volume is a staggering 450 km3, which is 100 km3 greater than that of Mount Shasta, Oregon. Iztaccíhuatl began its activity ca. 1.1 Ma ago. From then until 0.45 Ma several volcanic edifices were formed. At that date, the Los Pies Recientes cone was devastated by a Mount St. Helens–type event which destroyed the southeastern flank and produced a massive debris avalanche accompanied by large pyroclastic flows.

The summit ridge consists of a series of overlapping cones constructed along a NNW-SSE line to the south of the Pleistocene Llano Grande caldera. Andesitic and dacitic Pleistocene and Holocene volcanism has taken place from vents at or near the summit. Areas near the El Pecho summit vent are covered in flows and tuff beds younger than glaciation approximately 11 kA, yet GVP states that “The Global Volcanism Program is not aware of any Holocene eruptions from Iztaccihuatl.”

The once glacier-covered peak of Popocatépetl stratovolcano rises above Tlamacas to its north in this photograph from 1968. The sharp peak at right is Ventorrillo, the summit of a predecessor to Popocatépetl, the eroded Nexpayantla volcano. (William Melson)

Popocatépetl

Popocatépetl is the most active volcano in Mexico, having had more than 15 major eruptions since the arrival of the Spanish in 1519 with the most recent in 1947. In Nahuatl, the name means “Smoking Mountain”. Popocatépetl reaches 5,426 m a.s.l. with a prominence of 3,020 m with a base diameter of about 25 km. The crater is elliptical with an orientation northeast-southwest. The walls of the crater vary in height from 600 to 840 m. It lies 70 km southeast of Mexico City and more than one million people live within a radius of 40 km from the summit. According to paleomagnetic studies, the volcano is about 730,000 years old.

Popocatépetl used to be covered by glaciers, but due to increased volcanic activity in the 1990s, the glaciers covering Popocatépetl greatly decreased in size and by 2001 they were gone. Historically, Popocatépetl has erupted predominantly andesitic magma but it has also erupted large volumes of dacite. Magma produced in the current cycle of activity tends to be a mixture of the two.

There are at least four debris avalanche deposits around Popocatépetl volcano. The oldest comes from the failure of the SE flank of Iztaccíhuatl volcano, and the other three come from the flank collapse of paleo-Popocatépetl, the youngest being the 23,000 yr B.P. deposit. The modern volcano was constructed to the south of the late-Pleistocene to Holocene El Fraile cone. Three major Plinian eruptions, the most recent of which took place about 800 AD, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept through the basins below the volcano.

Some 23,000 years ago a lateral eruption, greater than the 1980 Mount St. Helens eruption, resulted in the lateral collapse of the ancient Popocatépetl cone. The explosion generated a debris avalanche deposit that reached up to 70 km to the South from the summit. The decompression of the magmatic system caused a lateral blast that emplaced a pyroclastic surge deposit accompanied by a Plinian eruption column which deposited a thick pumice-fall layer on the southern flanks of the volcano. The column then collapsed and formed an ash flow that charred everything in its path. The deposit reached up to 70 km from the summit, covers an area of 900 km2, and if we assign an average thickness of 15 m, a volume of 9 km3 is obtained. This deposit overlies paleosoil that contains charred logs radiocarbon dated at 23,445 ± 210 yr. Disseminated charcoal found in the ash flow deposit yielded an age of 22,875 +915/−820 yr. (Macías)

During the past 20,000 yr the explosive activity of Popocatépetl has been characterized by four major events (14,000, 5000, 2150, and 1100 BP) and four minor events (11,000, 9000, 7000 and 1800 BP) The events that occurred at 5000 and 1100 BP had a similar evolution. They began with hydromagmatic explosions that dispersed wet pyroclastic surges up to 20 km from the summit. These explosions opened the magmatic conduit, decompressed the magmatic system, and formed >25-km-high Plinian column.

From our perspective, it is of interest to note that the last three Plinian eruptions of Popocatépetl coincide with three important events in Mesoamerican history: The 3195–2830 B.C. eruption coincides with the 3114 BC beginning of the Mesoamerican Calendar. The 215 BC eruption coincides with the transition from the Preclassic to the Classic period. The last major eruption, which probably occurred in 823 AD, coincides with the Classic-Postclassic periods transition.

The Parque Nacional El Tepozteco is at the centre of the Chichinautzin volcanic field. It consists of a small temple to the Aztec god Tepoztecatl, a god of the alcoholic pulque beverage. (unearthingarchaeoblog)

The Chichinautzin Volcanic Field

The Chichinautzin volcanic field contains more than 220 Pleistocene to Holocene monogenetic vents and covers a 90-km-long, E-W-trending area immediately south of Mexico City. It is formed primarily of overlapping small cinder cones and shield volcanoes with a mainly basaltic-andesitic to andesitic composition with a thrachytic component as well as some dacite evident. The highest peak of the Sierra Chichinautzin is the Volcán Ajusco lava-dome complex at 3930 m a.s.l. There have been at least eight eruptions within the past 10,000 years with the most recent about 1670 radiocarbon years ago (~340 AD) from the Xitle scoria cone. These eruptions have typically been VEI 3 with one registered as a VEI 4. A very modest estimate based on an oval 60 x 90 km with an average emplaced height of 250 m yields a figure of 1,050 cubic km for the volume of the dome but the true figure could be more than double that. From the list of sources in the GVP entry for the Chichinautzin volcanic field, it would seem that some individual cones, vents and flows have been studied, but not the feature as a whole. What is it? What is its true age? Why is it so large, far larger than the initial shield deposited during the first development stage before volcanism shifts to construct (a series of) stratovolcanic edifices? Is there a significance to its position on the same isoline above the subduction zone as Pico de Orizaba, Popocatépetl and Nevado de Toluca?

Summing up

The geological setting of the Mexico City basin is unusual in that the subduction zone makes an almost 90-degree angle and that the major volcanoes do not follow the subduction zone but rather form lines at right angles to it. Instead of showing a neat progression, volcanic activity has been shown to jump “chaotically” (Macías 2011) both geographically as well as petrologically. There is a marked absence of identified caldera structures in the area, yet in the middle of it, right at the southern edge of the city limits, lies a more than 1,000 km3 large Pleistocene to Holocene dome structure that has been active until recently, one that is not well studied.

In addition to this, the Nevado de Toluca volcano has already produced eruptions sufficiently large to deposit ignimbrites at distances greater than 25 km from its summit and Popocatépetl clearly has the potential to do so. Both these volcanoes (and Iztaccihuatl) have suffered several major edifice collapses where deposits have been traced to distances greater than 55 and 70 km respectively.

With almost 30 million people living within 100 km, Mexico City will remain on our list until the mysteries of why the “currently and recently active” volcanoes of the TMVB align perpendicular to the subduction zone as well as where and why the very large, caldera-forming eruptions (VEI 6 to 7) have disappeared to have been unravelled. It will remain on our list until we have a thorough investigation of the past and likely future evolution of the gigantic Chichinautzin volcanic field as well as a better understanding of the risks posed by the large stratovolcanoes in the vicinity.

The more I delved into this subject, the more intricate it became and the more I realised just how little I understood. The TMVB as it passes the Toluca – Mexico City – Puebla area once fully investigated may well deserve a place higher up on the list (or possibly even be struck from it), but with the material and understanding at present, we will leave it at a provisional fifth place on our list.

Volcanoes in Space

Standard

We live on a spectacular, dynamic planet. Geological processes like volcanism and quakes were long thought to be unique to Earth, then again we once thought the planet was flat! As we further our exploration of our solar system and beyond we have witnessed that many other planets display activity from moon quakes to eruptions on distant moons of Jupiter.

https://i2.wp.com/static.wixstatic.com/media/adbce4_e00555b4dd2d4467b8bad585a3250273.jpg_srz_674_518_75_22_0.5_1.2_75_jpg_srz

In June Venus broke in to mainstream media as the ESA announced they had evidence of current volcanic activity on the second planet from the Sun. Venus’s dense atmosphere has long been blamed on a violent eruptive past, but it was thought that this had long since calmed. Then last month NASA released images of Pluto which suggested recent resurfacing, so where is there volcanic activity within our solar system and how does it compare to activity here on Earth? Here is a basic over view of volcanology with our Solar System other than here on Earth.

Mercury

Starting with the planet nearest the  Sun with a small, quiet Mercury. When people first glimpsed at the planets scarred surface instantly it was thought that the impact from meteors or asteroids in the past were the most likely cause. Even when the suggestion was made that volcanism could be a cause for at least some of the topography it was said that the planet did not have the volatiles available for such explosions. These ideas were strongly refuted in 2008 when NASA’s MESSENGER mission began to feed back clearer images of the surface then we had before. They showed clear signs of pyroclastic deposit at 51 sites, all of which showed different degrees of erosion indicating they had happened at varying stages in the planets history. There was also evidence of compressional features such thrust faults leading us to belive that Mercury is more geologically active (or at least has been) then we previously thought.

Venus

Venus’s surface is scared with more volcanic features than any other planet in our solar system. Its dense, toxic atmosphere is believed to be due to the release of volatiles during its explosive past.Huge shields such as Maat Mons and Sapas Mons have appeared reminiscent of those of Earth such as Muana Loa with composition of lavas most likely to be a fluid basaltic or occasional carbonatite. Although some similarities are there Venus shows no sign of tectonic activity such as the liner volcanic chains or subduction arcs we have here on Earth. Volcanism appears to be limited to upwelling similar to hotspots on Earth evident in the large Hawaiian style shields.

Despite all this evidence of volcanism it appeared to have long since ceased until ESA’s Venus Express completed its 8 year mission getting up close and personal with the planet last year.

Radar imagery detected several hot spots along the surface indicating at the very least younger lava flows then we previously thought. It is still open for debate for the age of such flows or if even an eruption or two are taking place up there while I type. The one thing that Venus Express has proved is that activity has occurred in more recent geological time than we had previously thought.

The Moon

Getting closer to home we have our natural satellite, the Moon. It’s surface separated in to two distinct regions; Lunar highland and maria.  The age of the two regions were hinted at by the amount of impact scaring. The older the rock the more impact craters tend to cover its surface; the highlands. The dark patches, visible to even the naked eye, are the maria, volcanic resurfacing of these areas been they are less scared by impacts. Basaltic lava flows dated predominately at 3.8-3.2 Ga, believed to be caused by upwelling in ancient impact basins due to thinness of the crust. Unlike terrestrial basalt, samples from the Mood indicate a much lower SiO2 content (<45%).

Patches reveal recent lunar volcanism

But much like Venus, where we thought things had calmed billions of years ago, in 2014 NASA’s Lunar Reconnaissance Orbiter (LRO) allowed us to see our perception of Lunar volcanism was also potentially wrong. It was perceived volcanism came to a rather abrupt stop roughly 3.2 Ga ago but LRO was able to pick out rock formations and deposits which would not have been visible from Earth. These new features were termed Irregular Mare Patches (IMP). These new images suggest volcanism did not stop abruptly as previously thought, but petered off over millenia ending as little as 100 million years ago.Figure 4 shows one such IMP deposit called Maskelyne indicative of smaller, younger eruptions than what we believed formed the maria in the first place.

This leads to a whole new train of thought when it comes to lunar dynamics. Recent volcanism means the Moon’s interior was hotter for longer then we believed, and if so is it still capable of eruptions?

Io

Io is one of my favourite aspects of extraterrestrial volcanism, and to be fair volcanology in general. Despite only being one of Jupiter’s moons, it claims the title of our Solar Systems most volcanically active body. Io’s most famed images captured a sulphurous eruption column which breached Io’s atmosphere climbing 140 kilometres from the surface from the  Pillan Patera caldera. And also in the centre of the image the Prometheus Plume, a 76 kilometre eruption column which cast and amazing shadow of the surface. The first time the Prometheus Plume was spotted was during the Voyager flybys in 1979. It was then captured several times in exactly the same place at a similar altitude by Galileo during its orbital of Jupiter from 1995 to 2003. This suggests an eruption of continuous intensity for over 18 years!!!

Io: The Prometheus Plume

Volcanism is believed to be driven by strong tidal forces. Io is not only subject to Jupiter’s gravitational pull but also that of two of its other satellites; Europa and Ganymede, both much larger than Io. The surface is full of huge caldera’s and lava flows, much longer that we see on Earth. Magmatic composition is believed to vary from ultramafic basaltic flows to much more sulphur rich melts which lead to flows in excess of 2400  °C. It is thought that as many as 400 active volcanoes cover the surface making it a very explosive environment indeed!

Enceladus

Cryovolcanism is a concept that had been batted around for a while on form or another. A volcano erupts a melt based on the composition of the underlying crust and in some cases mantle. On Earth we have a wide variation of silica based magmas and even the rare instances of carbonatites, but what of an icey body rich in water, ammonia or methane?

When the Voyager missions passed Enceladus in the early 1980’s it was suggested that the satellite may be geologically active due to its smooth surfaces and location close to the E Ring. It wasn’t untill NASA’s Cassini mission in 2005 that proof of cryovolcanism on the body really came to light.

The first detection of the icy plume came on February 17th. Then a second event was witnessed July 14th and this time Cassini flew through the gas cloud enabling on board instruments to tell us the composition; predominately water vapour with traces of nitrogen, methane and carbon dioxide. Visual confirmation came in the November with plumes of icey particles streaming from the bodies south polar region. A subsurface ocean under the south polar region is believed to be the cause of a thermal anomaly in the area which could be fuelling volcanic activity, although tidal heating my also have a hand.

Triton

In 1989 Voyager 2 passed by Neptune’s moon Triton and took images to give us an insight to these far out bodies and managed to find further proof of cryovolcanism in our Solar System. Several geyser like eruptions were spotted with plumes as high as 8 km above the surface. The entire surface looked relatively young with such fewer impact craters than other bodies the mission had encountered, another indication it was very geologically active.

Pluto and Charon

NASA’s New Horizons mission sent back amazing images in July of not only Pluto, but also its satellite Charon. Both exhibited relatively young surfaces, Charon more so than Pluto has huge patches barely dented by impacts suggesting recent resurfacing. Pluto is home to mountainous regions which have be likened to the Earth’s Rocky’s and huge nitrogen filled glaciers. Although no clear evidence of volcanism was seen as of yet, it is obvious that Pluto is more geologically active then we previously thought. It will take another 16 months for all the data collected to return to Earth so in time we may have evidence of at least one or two more volcanic bodies within our system!

There is still much we don’t know about the dynamics of volcanoes, both here on Earth and on other planetary bodies. One thing we can conclude is the further we explore the universe the more we will learn geologically which we can apply to our own planet and equally, exploring our own planets workings can help us understand others.

Figure 1. Painting; http://www.astroart.org/#!volcanoes/c440

Figure 2. Mercury; http://space.stackexchange.com/questions/2302/how-tectonically-active-is-mercury

Figure 3. Venus poster; http://www.esa.int/spaceinimages/Images/2015/06/Evidence_for_active_volcanoes_on_Venus

Figure 4. Moon; http://www.latimes.com/science/sciencenow/la-sci-sn-moon-volcano-recent-nasa-lunar-20141014-story.html

Figure 5. Io; http://www.nasa.gov/multimedia/imagegallery/image_feature_758.html

Figure 6. Enceladus diagram; https://en.wikipedia.org/wiki/Enceladus#Cryovolcanism

Figure 7. Enceladus; https://www.pinterest.com/astrobella/volcanoes-fire-and-ice/

Figure 8. Pluto; http://www.bbc.co.uk/news/science-environment-33543383